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Abstract. We study chaos synchronization in two resistive-capacitive-inductive-shunted (RCL-shunted)
Josephson junctions (RCLSJJs) by using a common chaos driving. The numerical simulations confirm that
the synchronization of two RCLSJJs can be achieved with a suitable driving intensity when the maximum
condition Lyapunov exponent (MCLE) is negative.

PACS. 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects – 05.45.Xt Synchro-
nization; coupled oscillators – 05.45.Pq Numerical simulations of chaotic systems

1 Introduction

Since the seminal work by Huberman et al. [1], the study
of chaos in Josephson junctions has attracted much at-
tention due to their extensive applications [2,3]. Early,
one model of Josephson junctions is resistive-capacitive-
shunted junction (RCSJ) introduced by Stewart et al. [4],
and its chaos behaviors have been reported in [5,6].
With the rapid development in fabrication technology
and low temperature techniques, the Josephson junction
with higher critical current could be expected in prac-
tical applications. To further study this kind of junc-
tions, the RCLSJJ model was proposed by Whan et al. [7]
So the disadvantage of the RCSJ model has been mod-
ified. Then, there have been several reports on dynam-
ics of RCLSJJ. Whan et al. [8] studied chaotic behavior
and the effect of thermal noise in this system; Cawthorne
et al. [9] investigated complex dynamics of RCLSJJ, also
they [10] reported synchronized oscillations in RCLSJJ
array. Recently, chaos control and chaotic synchroniza-
tion in RCLSJJs have been the interesting subjects of re-
search [11–13], since this kind of junctions are more used
in secure communication and the Mixer systems [14,15].
Yang et al. [11] reported a computer-assisted proof of
chaos in RCLSJJs; Dana et al. [12] reported taming of
chaos and synchronization in RCLSJJs by external pe-
riodic forcing; Ucar et al. [13] reported chaos synchro-
nization in RCLSJJs via active control. In addition, Zhou
et al. [16] reported that common driving noise can in-
duce complete synchronization and phase synchronization
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in the Rossler system and Lorenz system. In this pa-
per, we will study complete chaos synchronization in two
RCLSJJs by using a common chaos driving. The numer-
ical results show that two driven RCLSJJs can be syn-
chronized with each other by properly adjusting driving
intensity.

2 Chaos in RCL-shunted Josephson junction

The normalized dynamical equation of the RCLSJJ used
here is the following [8]:

dγ

dτ
= υ

dυ

dτ
=

1
βc

(i − gυ − sin(γ) − is)

dis
dτ

=
1

βL
(υ − is) (1)

where normalized time τ = ωt, with ω = 2eIcRs/�, γ is
the phase difference of the superconducting order param-
eter across the junction.

- The normalized junction voltage: υ = V/IcRs, and V
is the junction voltage.

- The normalized external dc bias current: i = I/Ic.

- The normalized shunt current: is = Is/Ic.
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Fig. 1. (a) The bifurcation diagram of the RCLSJJ versus i; (b) the maximum Lyapunov exponent λmax − i. Parameters:
βc = 0.707, βL = 2.68, g = 0.0478.

Other dimensionless parameters are as follows:

βc = 2eIcR
2
sC/�

βL = 2eIcL/�

g = Rs/RV .

Here Rs and L are the shunt resistance and inductance,
respectively. I, Is, and Ic are the external dc bias current,
the shunt current flowing through Rs, and the junction
critical current, respectively. C and RV are the junction
capacitance and the junction resistance, respectively. � is
Planck constant.

To show chaotic behaviors in RCLSJJ system, equa-
tion (1) is solved with changing the bias current i for
fixed βc = 0.707, βL = 2.68, and g = 0.0478. In this
work, the differential equations are numerically solved
by using the fourth-order Runge- Kutta method with a
fixed step ∆τ = 0.01 and total steps Nstep = 105, the
Lyapunov exponents are computed by using the algo-
rithms by Wolf [17], and the voltage bifurcation diagrams
are plotted by recording the local maxima in the voltage
time series [18]. The parametric values used in numerical
calculations are obtained from [7] and [8] at temperature
T = 7.60 K. The bifurcation diagram and the maximum
Lyapunov exponent (MLE) versus the external bias cur-
rent are presented in Figure 1, where one can find that for
1.090 < i < 1.156 and 1.164 < i � 1.20 the RCLSJJ sys-
tem is in chaotic states which are occasionally interrupted
by periodic windows; for other i values in the selected
range, this system is in the periodic state. Thus, the state
of this RCLSJJ can be changed by adjusting the external
bias current.

3 The synchronization scheme and numerical
simulations

The chaotic driving synchronization method was proposed
in [19], where there are three systems, one is taken as the

Fig. 2. Synchronization scheme.

drive system; the other two are taken as the driven sys-
tems. The output signal of the drive system is used to
drive two driven systems. The synchronization of two sys-
tems is achieved when the MCLEs of two driven systems
are negative. Here we present the synchronization scheme
of [19] for two RCLSJJs and give the numerical results
for common autonomous chaos driving and common non-
autonomous chaos driving.

3.1 Autonomous chaotic Rossler system as driving
system

The schematic diagram is shown in Figure 2, where the
drive system is different from the driven systems.

In Figure 2, the driving circuits are formed by Rk1,
Rk2, F1, and F2 [20]; S1 is chaotic Rossler circuit sys-
tem and is taken as the drive system; S2 and S3 are two
RCLSJJs and are regarded as driven systems, which have
the same parameter values and different initial conditions.
In order to make it convenient for numerical analysis, the
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parameters of system S2 are used for normalizing to ob-
tain dimensionless variables and parameters of systems
S1, S2, and S3. So, the normalized time τ = ω2t, with
ω2 = 2eIc2Rs2/�, all currents here are normalized to Ic2

and all voltages to Ic2Rs2. The system S1 is not affected by
the systems S2 and S3, and its equation is the following.

dx

dτ
= −y − z

dy

dτ
= x + ay

dz

dτ
= b + xz − cz. (2)

Here x, y and z are normalized variables and are normal-
ized voltages; a, b, and c are dimensionless parameters.
For the systems S2 and S3, their dynamical behaviors are
influenced by system S1, so their dynamics equations are
changed, and their dimensionless equations are shown as
follows.

dγn

dτ
= υn

dυn

dτ
=

1
βcn

(in − gnυn − sin(γn) − isn + k(y − υn))

disn

dτ
=

1
βLn

(υn − isn). (3)

Here n = 2 and n = 3 represent the systems S2 and S3,
respectively.

- The normalized junction voltage: υn = Vn/Ic2Rs2,
and Vn is the junction voltage.

- The normalized external dc bias current: in = In/Ic2.

- The normalized shunt current: isn = Isn/Ic2.

Other dimensionless parameters are the following:

βcn = 2eIcnR2
snCn/�

βLn = 2eIcnLn/�

gn = Rsn/RV n

and the normalized driving intensity k = Rs2
Rk1

= Rs3
Rk2

.We
may adjust appropriately Rk1 and Rk2 so as to obtain a
driving signal with an appropriate intensity and achieve
chaos synchronization in the driven systems.

To illustrate the synchronization process, we numeri-
cally analyze systems S1, S2, and S3 under condition of
the system S1 being in chaotic state and systems S2 and
S3 being in various dynamics states (periodic and chaotic)
before being driven. Thus, the parameters of system S1 are
chosen as follows: a = b = 0.2 and c = 4.5, with which
system S1 lies in a chaotic state. According to Figure 1, in
order to make original systems S2 and S3 stay in different
states, we change their bias current from i2 = i3 = 1.0
to i2 = i3 = 1.16 and maintain g2 = g3 = 0.0478,
βc2 = βc3 = 0.707, and βL2 = βL3 = 2.68. The initial val-
ues are: x0 = 1.0, y0 = 1.1, z0 = 1.0, γ0

2 = 0.1, υ0
2 = 2.0,
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Fig. 3. The MCLE of the driven systems S2 and S3 versus the
driving intensity k with parameters βc2 = βc3 = 0.707, g2 =
g3 = 0.0478, i2 = i3 = 1.12, βL2 = βL3 = 2.68, a = b = 0.2,
and c = 4.5.

i0s2 = 0.1, γ0
3 = 0.2, υ0

3 = 2.2, and i0s3 = 0.2. With the
parametric values and initial values above, we solve equa-
tions (2) and (3). The numerical results show whether sys-
tems S2 and S3 were in periodic or chaotic states previ-
ously, when they are driven by system S1 with the driving
intensity k � 0.21, they can enter into chaos synchro-
nization states, i.e., γ2 = γ3, υ2 = υ3, and is2 = is3.
To show the synchronization phenomenon, now we take
i2 = i3 = 1.12 with other parameter values being the same
as those in Figure 1, and the MCLE of driven systems S2
and S3 is shown in Figure 3.

In Figure 3, one can find that for 0.08 < k < 0.10,
0.12 < k < 0.14, and 0.21 � k � 1.0, the MCLE is
negative, namely, two driven systems S2 and S3 can be
synchronized with the value of k selected in these three
ranges. The synchronization phenomenon with k = 0.21
can be clearly seen in Figure 4, where (a), (b), and (e), (f)
are the attractors of systems S2 and S3 before and after
they are driven, respectively. One can see that Figures 4e
and 4f are influenced by the drive system and are different
from Figures 4a and 4b. From Figure 4c we cannot see a
regular relation between υ2 and υ3, and the relationship
is complex; from Figure 4d we can see that the difference
of the υ2 − υ3 is not zero value for long time, so systems
S2 and S3 are not synchronized before being driven. From
Figures 4g and 4h, one can find υ2 = υ3, which always
holds true after the transient process has died out, other
corresponding variables are also the same, thus systems S2
and S3 are synchronized after being driven with k = 0.21.

In addition, we find that if the states of systems S2 and
S3 vary with the bias current i = i2 = i3 before they are
driven, the minimum value of the driving intensity k vary
with them in order to make the synchronous chaos states
exist in the driven systems S2 and S3. The relationship is
plotted in Figure 5.
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Fig. 4. Chaos synchronization in systems S2 and S3 before and after being driven with k = 0.21 and other parameters being
the same as those in Figure 3. Here (a, b, e, f) the attractor on planes υ2 − is2 and υ3 − is3 before and after being driven; (c,
g) the relation between υ2 and υ3 befor and after being driven; (d, h) the difference of υ2 − υ3 versus time τ , before and after
being driven, respectively.
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Fig. 5. The minimum driving intensity Kmin versus the bias
current i = i2 = i3 with other parametric values being the
same as those in Figure 3.

As the state of Rossler system can be changed by ad-
justing parameter c, we take different c values and obtain
different chaos states in order to study chaos synchroniza-
tion in systems S2 and S3. The numerical results show
whether original systems S2 and S3 are chaotic or not,
they can achieve chaos synchronization when the Rossler
system is in chaotic state and the MCLEs of systems S2
and S3 are negative with proper driving intensity.

3.2 Non-autonomous chaotic RCSJ as driving system

The schematic diagram is shown in Figure 6, where sys-
tems S2 and S3 are two RCLSJJs which are the same as
those in Figure 2; RCSJ is regarded as driving system.

Here we take the parameters of this RCSJ as fol-
lows [1]: R1 = 4 Ω, C1 = 5 pF, Ic1 = 100 µA, and
the plasma frequency ω1 = (2eIc1/�C1)1/2 = 1010 Hz.
The parameters of system S2 are also used for normaliz-
ing, and normalized dynamical equation of RCSJ is the
following [1]:

dγ1

dτ
= υ1

dυ1

dτ
= −g11υ1 − g12 sin(γ1) + g12α cos

(
β

ω1

ω2
τ

)
, (4)

where

g11 =
1

C1ω2R1

g12 =
Ic1

Ic2C1ω2Rs2
.

The normalized junction voltage: υ1 = V1/Ic2Rs2

α =
Ia1

Ic1
(5)

Fig. 6. Synchronization scheme.

β =
ωa1

ω1
, (6)

where Ia1 and ωa1 are respectively the amplitude and an-
gle frequency of I1 which is the external ac bias current,
and I1 = Ia1 cos(ωa1t). From equation (4), it is found that
α and β can be taken as the control parameters. Accord-
ing to equations (5) and (6), the values of α and β can
vary with the change of the amplitude Ia1 and frequency
ωa1, respectively. The RCSJ system can be in different dy-
namics states with different α or β values [1], so its dimen-
sionless parameter values are chosen to be [1]: g11 = 0.054,
g12 = 0.0717, α = 0.72, β = 0.55, and ω1

ω2
= 0.2679, for

which this RCSJ is in chaotic state with the MLE be-
ing 0.02951. The parameters of systems S2 and S3 are
chosen to be: i2 = i3 = 1.0 ∼ 1.16, and other param-
eter values being the same as those in Figure 1. With
this scheme and these parameter values above, we also
carry out numerical simulations of chaos synchronization
in two driven RCLSJJs. The results show whether sys-
tems S2 and S3 are chaotic or not before being driven,
they can enter into the chaos synchronization state when
they are driven by chaotic RCSJ with the driving intensity
k � 0.35.The synchronization phenomenon with k = 0.35
and i2 = i3 = 1.12 can also be clearly seen in Figure 7.

Therefore, both autonomous chaos driving and non-
autonomous chaos driving can induce chaos synchroniza-
tion in two driven RCLSJJs. But the autonomous chaos
driving is better, since (1) the driving intensity, which
makes the synchronous chaos states exist in the driven
RCLSJJs, is smaller than that one of the non- autonomous
chaos driving; (2) autonomous chaos driving do not need
additional ac current source.

Based on the results above, we extend chaos synchro-
nization in two driven RCLSJJs to more driven RCLSJJs.
As an example, the case of existing one driving system and
three driven RCLSJJs is studied, and their parameters are
the same as those above, but the initial conditions are dif-
ferent. The calculation results indicate that these three
driven RCLSJJs can also be synchronized if their MCLEs
are negative.
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Fig. 7. Choas Synchronization in driven systems S2 and S3 with k = 0.35, g11 = 0.054, g12 = 0.0717, α = 0.72, β = 0.55,
ω1
ω2

= 0.2679, and other parameter values being the same as those in Figure 4. Here (a, b) the attractor on planes υ2 − is2 and

υ2 − is3, respectively; (c) the relation between υ2 and υ3; (d) the difference of υ2 − υ3 versus times τ .

4 Conclusion

This paper has studied parameter conditions for
chaos generation in RCLSJJ by changing external
dc bias current and presented the scheme for chaos
synchronization in two RCLSJJs by using a common chaos
driving. Numerical results have demonstrated that both
autonomous chaos driving and non-autonomous chaos
driving can induce chaos synchronization in two or sev-
eral driven RCLSJJs by choosing proper driving inten-
sity. This is useful for achieving chaotic synchronization
in RCLSJJs.
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